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Abstract: This work develops a novel disturbance observer and integral sliding mode technique based fault tolerant attitude
control scheme for spacecraft, which is subject to external disturbance torques and actuator failures. More specifically, a simple
and novel finite-time disturbance observer is first designed to reconstruct the synthetic uncertainty deriving from actuator failures
and disturbances, by which the synthetic uncertainty is also compensated or restricted. Then, an integral sliding mode based
finite-time fault tolerant attitude stabilisation controller incorporating with an adjusting law is investigated to ensure the closed-
loop attitude control system converge to the stable region in finite time. And also the finite-time stability of the closed-loop
attitude control system driven by the proposed attitude control scheme is analysed and proved utilising Lyapunov methodology.
Finally, a simulation example for a rigid spacecraft model is carried out to verify the effectiveness and superiority of the

proposed attitude control approach.

1 Introduction

Attitude control of spacecraft plays a very important role in many
aerospace missions. And much attention has been paid by
academic and industrial communities to their development, to
ensure that the expected control system performance indices are
achieved. Many control methods have been applied to achieve the
attitude control missions, such as feedback control, non-linear
control, optimal control, adaptive control, sliding mode control,
robust control, and their integrations [1-7]. However, it may result
in unsatisfactory performance even instability when unexpected
malfunctions or catastrophic failures occur in actuating
mechanisms. Therefore, fault tolerant control (FTC) and
disturbance attenuation techniques must be taken into account for
the construction of the spacecraft attitude control system.

In view of the existing researches, FTC methods can be
classified into two main types, i.e. passive FTC (PFTC) and active
FTC (AFTC). The PFTC aims at being robust against some known
or expected types of failures by deteriorating the control system
performances, such as the results in [8-10] and some correlative
references therein. It is difficult for the above control law to react
promptly, although it can finally counteract the faults or
uncertainties through a passive feedback regulation in a relatively
slow way. What is worse, it may lead to the control system
instability in some abrupt or abominable situations. Thus, AFTC
has attracted much attention in the past decades because of its
feasibility and effectiveness to deal with the multiply or unknown
failures. During the design of AFTC, fault detection and diagnosis
(FDD) mechanism is a fundamental and essential part, which
provides system failures or uncertainties information. FDD-based
AFTC schemes have attracted considerable interests, especially for
observer-based approaches, such as non-linear observer, robust
observer, sliding mode observer, iterative learning observer,
extended state observer (ESO) and so on [11-16]. Furthermore, in
order to compensate for the lumped uncertainty/disturbance
composed of external/internal disturbances and failures,
disturbance observer (DO) has been considered as an effective way
or an active approach to improve robustness, through estimating
the lumped disturbance and designing DO-based controller [17—
19]. In [19], a robust attitude tracking controller for quad-rotors
based on the non-linear DO has been developed under parameter
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uncertainties and disturbance torques. In [20], the additive attitude
measurement errors, external disturbances and system uncertainties
are compensated by the non-linear DO during the design of
backstepping based attitude stabilisation control approach. In order
to offer superior convergence and better disturbance rejection
capabilities, a hierarchical controller based on a new DO with
finite-time convergence is proposed to solve the path tracking of a
small coaxial-rotor-types unmanned aerial vehicles (UAVs) [21],
and the unknown uncertainties and disturbances are reconstructed
by the designed DO. However, the actuator failures are not taken
into consideration during the design of the DO-based controllers.

Although the issue of spacecraft attitude control under actuator
failures or system uncertainties has been researched and reported
extensively, most works achieved asymptotic stability or bounded
stability. As is known, finite-time control of dynamical system
possesses the capacities of fast convergence, high-precise, and
strong disturbance rejection and so on [22-25]. In [25], Du and Li
investigates the finite-time attitude stabilisation problem for a rigid
spacecraft with an unknown inertia matrix, and constructs a global
finite-time stable control law. Gui ef al. [26] designs several simple
non-linear proportional-derivative type saturated finite-time
controllers, but the disturbances and uncertainties cannot be taken
into account.

To achieve the finite-time stability of the attitude control system
under actuator failures or system uncertainties, sliding mode
control (SMC) technique based FTC is recognised as an effective
way. But, they have some disadvantages, for instance the system
dynamics might be vulnerable to failures or uncertainties during
the reaching phase in which the system states have not yet reached
the sliding manifold [27]. To this end, integral type SMC (ISMC)
has been developed such that the sliding mode starts from the
initial time instant, which possesses the faster convergence speed
and better robust performance due to the elimination of the
reaching phase [27-29]. In [30], an ISMC-based fault tolerant
controller is investigated to deal with the loss of failures of
actuators. For the issue of attitude tracking control in the presence
of inertia uncertainty, external disturbances and actuator failures,
an ISMC-based adaptive fault tolerant attitude control approach is
developed in [31]. However, they employ the passive/robust way to
deal with the uncertainties and failures, and even the disturbance or
chattering rejection problem is also not well addressed.
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Motivated by addressing the above problems, this work
investigates the finite-time DO (FTDO) and ISMC-based finite-
time FTC of spacecraft attitude stabilisation. The control approach
is developed in the framework of observer-based controller design,
which achieves the following main contributions:

i. A simple novel FTDO is constructed to estimate and
compensate for the synthetic uncertainty/disturbance deriving
from actuator failures and disturbances. Although many other
DOs have been presented for spacecraft, the proposed DO is
simpler, which is just related to the observation error of the
attitude angular velocity. On the other hand, the actuator
failures are taken into consideration during the design of the
DO-based control scheme in this work, which cannot be dealt
with by the similar DO for the path tracking problem of a small
coaxial-rotor-types UAVs in [21].

ii. An ISMC-based finite-time fault tolerant attitude controller
incorporating with an adjusting law is investigated, to ensure
the closed-loop attitude control system converge to the stable
region in finite time. Although the utilised integral sliding
mode surface in this work is inspired by [30], we have
proposed the novel approaches including the design methods
of finite-time observer and finite-time controller to handle the
actuator failures and observation errors.

It should be highlighted that the whole spacecraft attitude
control system including the DO and FTC mechanisms is verified
to be finite-time stable. And also the system chattering problem has
been well restrained such that the performances of strong
robustness, high-reliability and high accuracy attitude stabilisation
are achieved even in the presence of actuator failures and external
disturbances simultaneously.

2 Spacecraft modelling and problem formulation
2.1 Spacecratt attitude kinematics

In this paper, the modified Rodrigues parameters (MRPs) based
attitude representation method is utilised. Then, the spacecraft
kinematics model is established as [32]

p=G(pw (1

where the vector p €R’™' is the attitude MRPs, and
Gp)=(I—p*+pp" —(1+ p"p)l/2)/2. The vector w € R**!
denotes the attitude angular velocity. Moreover, I is an identity unit

matrix with the corresponding dimensions, and the symbol ()"
represents the operation to make a specified vector () to be a
skew-symmetric matrix.

2.2 Spacecraft attitude dynamics

The dynamics of a rigid body are given by the following attitude
rotational equation [32, 33]:

Jo=—-w'Jo+u+d )

where the matrix J € R denotes the positive-definite symmetric
inertia matrix of the spacecraft, and u € R’**' is the control torque.
Whereas the vector d € R**! is the disturbance torque.

2.3 Actuator failure

Reaction wheel (RW) is the frequently-equipped actuator in
aerospace engineering, which is also utilised to provide attitude
stabilisation control torques in this work. As described in [16, 34],
RWs are vulnerable to suffer the following four types of failures:
F1, decreasing reaction torque; F2, continuous generation of
reaction torque; F3, increasing bias torque; and F4, failure to react
to the system control signals. Accordingly, the actual output torque
can be modelled mathematically in the form of

T =gV tv (3)
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where vi(i = 1,2, ...,m) is the desired control torque allocating to
the individual actuator, v; represents additive fault induced by F2 or
F3, and ¢; € [0, 1] characterises the actuator control effectiveness.
Then, the cases of failures can be categorised as (1) e; = 1,v; =0
implies that the ith RW is working perfectly without any failure;
(2) 0<e;<1,v; =0 indicates the ith RW undergoes F1; (3)
e;; = 0,v; # 0 indicates the ith RW undergoes F2; (4) ¢; = 1,v; #0
shows the occurrence of F3; (5) e; = 0,v; = 0 implies completely

failure of actuator.
Accordingly, the spacecraft dynamics with m actuators/RWs
with failures are represented by

Jo=—w'Jo+Dv+d “

with d =D(E-Iyw+v+d, which is the lumped/synthetic
uncertainty or disturbance of the spacecraft attitude stabilisation
system. Given spacecraft attitude stabilisation system is a typical
over-actuated control system, the control allocation (CA) technique
is one natural and necessary solution for achieving a desired
control objective by distributing appropriately control signals

synthesised to each individual actuator. D € R**™ is the
configuration matrix or control allocation matrix, which should be
full rank matrix for the requirements of the controllability of the
over-actuated attitude control system in fault-free case.

E = diag(e,;, ex, ..., €um) € R™" denotes the actuator

effectiveness matrix. It is noted that the number of actuators
satisfying ¢; # 0 must be greater than three for the requirements of

the controllability of the attitude control system as well. In
addition, v =[v,Vy...,vu]T and ¥ =[v,Vy...,V,]' are the
commanded/desired torque and additive output vectors,
respectively.

Assumption 1: The output torque magnitudes of the actuators
installed in spacecraft are assumed to subject to the same constraint
value, which is noted as z,,x for simplicity.

Assumption 2: The lumped disturbance torque term d in (4) is
supposed to be bounded and differentiable. In addition, with
respect to Assumption 1 and the actuators' failures referred above,
the additive torque of the individual actuator v; is also bounded.
Therefore, it is reasonable to suppose that there always exists a
constant d, such that || d || < d,.

3 FTDO based attitude stabilisation control
3.1 Preliminaries

For the convenience and simplicity of the mathematical
descriptions, some notations are defined as follows:

sig”(x) = sign(x) | x["
|(X

. . . T
= [sign(x) |x, %, sign(e)|x,|%, ... sign(x,) | x,|°]

T
= [ Lol )]

where x =[x, %, ...,x,,]T, 0<a<1. sign(x) denotes a sign
function for the variable x, which is defined as

1. x>0
sign(x) ={ 0, x=0;
-1, x<0.

Then, consider the following non-linear system:

XH= flx(d), xM=x. [fO)=0, xeR" (5)
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where f:U — R is continuous in an open neighbourhood U of the
origin. Suppose that the system in (5) possesses a unique solution
in forward time for all initial conditions.

Definition 1 (Finite-time stability [22]): If the non-linear
system (5) is Lyapunov stable, the equilibrium x = 0 is constantly
established in finite time, then (5) is finite-time stable in an open
neighbourhood U, C U. The finite-time convergence means the
existence of a function T:Upn{0}— (0,0}, such that
Vx, € Uy{ 0}, the solution of the above system s/{z, xo) € U)\{0}
for t € [0, T(x9], and lim; - 7 Sf(z, Xo) = 0. If the zero solution is
finite-time convergent, the set of point x, such that s, x ) — 0 is
called the domain of attraction of the solution. When U = R”", one
can achieve that the equilibrium is globally stable in finite time.

Definition 2 (Practically finite-time stability [35]): For all the
initial value x, if there exists € > 0 and T(e, x,) < co such that the
system states meet || x || < € for all the time ¢t < % + T, the non-
linear system (5) is practically finite-time stable, or finite-time
uniformly ultimately bounded stable.

Lemma 1 (Locally finite-time stability [21, 22, 36]): Consider
the non-linear system (5), and suppose there exists a Lyapunov

function V(x) defined on a neighbourhood U c R” of the origin,
and V(x) + A, V)™ < 0 with x € UN{0}, 0 < on < 1, 4 > 0. Then,
(5) is locally finite-time stable (LFTS), and the needed time to
reach the target V(x) = 0is T < (1/(8,(1 — &) [V(x,)' ~*", in which
V(x,) denotes the initial value of V(x).

Lemma 2 (Practically finite-time stability or finite-time
uniformly ultimately bounded stability [35, 37]): Consider the non-
linear system (5), and suppose there exists a Lyapunov function
V(x) such that V(x) < — V()" +n with 0 < o, < 1, #, > 0, and
0 < 77 < o0. Then the trajectory of system is practically finite-time
stable or finite-time uniformly ultimately bounded stable. It means
that the system states x could converge to a small set around the
equilibrium in the finite time 7. The settling time is subject to
T</((p—0)(1 —a)Vix) ™ with 6€(0,5) And the
residual set of the solution of the system (5) is bounded as
lim, . 7 x € (V(x\"' <n/6).

Proposition 1 (Proposition of the finite-time uniformly
ultimately bounded stability given in Lemma 2 [36, 37]): Consider
the same system in (5) and an existing Lyapunov function V(x).
The trajectory of the system is finite-time uniformly ultimately

bounded stable in the region of Q = {x|V(x)" * < (8,/60)}, if
Vix)< =BV + V)2 for a>a» f,>0, B >0,
6 € 0, p,). The settling time for the states reaching the stable
residual set is bounded as T < [(V(xo)' ~M)/(( — 6,)(1 — a))].

Lemma 3 (Globally finite-time stability [24, 26]): Consider the
following system:

i=f@+f@®, fO)=0, xeR" ©6)

where f(x) is a continuous homogeneous vector field of degree
k<0 with respect to a dilation Al defined by
Aix = [e"x,€"xy ..., ")), F=(r, 1 ..., 1,), and the perturbation

vector field JA‘(xj satisfies f (0) =0. If the system (6) is both
globally asymptotic stable (GAS) and LFTS, then it is globally
finite-time stable (GFTS).

3.2 FTDO design

The FTDO dynamics for the attitude stabilisation control system in
(4) is established as
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Jak; = —wJw+Dv+ 9 @)

where & is an auxiliary variable which will be designed
thereinafter. Let @ be the observed value of the attitude angular
velocity @, and denote @ = @ — @ as the observation error. In view
of (4) and (7), the observation error dynamics could be written as

w=J'd-J"'9 ®
9= 1Jsig" (@) + Azjfsig‘”(d)(f)}df )

with @, € (1/2,1), =2, — 1,4, > 0and 4 > 0.
Consider the following transformation of coordinates:

1=lzzl = [@.8" (10)
with & = — 4, [sig®™(@(£))dZ + J~'d. Then, one can obtain
2= —Asig"(z) + 2 (11a)

b= — Asig®(@) + g(0) (11b)

where g(t) is the differential of the first term in (8) with respect to
time. It is assumed to be bounded by || g(#} || < g, in which g, is
an existing and known constant. In view of this, the following
statement can be obtained as the first achievement of this work.

Theorem 1: Consider the spacecraft system in (1) and (4) under
Assumptions 1 and 2, applying the proposed FTDO mechanism in
(7)—(9) with appropriate gains, the states z, and 2z, in the auxiliary
system in (11) are finite-time uniformly ultimately bounded stable.
Then z, converges to a small region of the origin in finite time,
which also implies that the auxiliary variable ¢ will converge to the
synthetic uncertainty d in finite time.

Proof of Theorem 1: Define the following positive-definite
Lyapunov function as:

V,=¢'Pe (12)

where the vector € and the symmetric positive definite matrix P are
defined, respectively, as

Z]T’ P=L2;12+alﬁf —a A,

e = [sig"@z )z %

— A, 2

Note that the designed Lyapunov candidate function in (12) is
continnous and  differentiable = except on  the  set
Z,={(z12) |2 =0}, it yields to

Anin(P)|| € ”l SV Z dnadP)|| £ ”1 (13)

in which A,,(-) and Ay,(-) represent the maximum and

minimum eigenvalues of the specified matrix, respectively.
By proceeding with differentiation of the Lyapunov function V,
with respect to time, one can obtain that
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: : 2h+adi -l
v, =%Islgm(31)ez,!]’ 2T A a4

—ady 20
ekl (Asig @) +2,)
—Asig @)+ g

< =Nz 197 + @dd)asig* (@) (14)

+ oy — 247 aisig™ (212,

-
T

+ e
2 lg

< -z |17 'e"Qe +£Trg
with

0= 1 -I-(I‘l;{f —a A e [—AI .
—a A a 2

According to the definition of & in (12), one can obtain that
” Z ”u]—l 2 || P |I(ml—l)/u]) . (15)

Further, the differential of V, in (14) follows that

Vi< =z 1" Juin@l & P+ e Il 7l

—dminl@)ll € [+ gl P Il € |l

_ lmin(QVLma {P)—((alJra;)/za D V(I(al +m)/ay (16)
X

+ &l 7 Amin®) PV

< = MY g,

IA

IN

where  @= (@ + a:)/2a1, M= Auin(Q Vianax (PY ' ™) and
My= g || 7 | Anin(PY . Given the variables a,€ (1/2,1) and
a, =20 — 1, one can obtain easily that @ € (1/2,1). That is to say,
the fractional powers in the inequality (16) meet the following
relationship @ > 1/2. According to Proposition 1, the finite-time
uniformly ultimately bounded stability of the auxiliary system in
(11) can be established, which indicates that the states z, and z in
(11) will converge to the small region as

D= [eIV(€)< (JZZ)MW] (17

with 6, € (0,M,). And the settling time for the states reaching the
stable residual set is bounded as
To<[(Vig) " H/(M,— 6,1 —-a)]. It also implies that the
auxiliary variable & is bounded, and it will converge to the
synthetic uncertainty d in finite time. Then, the reconstruction error
of the synthetic failure/uncertainty & deriving from FTDO is
bounded theoretically in finite time, and the upper bound is
assumed to be@ =[@, ¢, 0;]. This completes the proof. o

3.3 Finite-time attitude stabilisation controller design

In this subsection, a simple finite time control law is first
developed for the zero-disturbance and fault-free attitude
stabilisation control system, which also will be used as a baseline
controller in the next subsection for the FTC design.

Theorem 2: Consider the spacecraft system in (1) and (4) under

Assumptions 1 and 2 without any actuator faults and external
disturbances

Jo = —w'Jw+ Dv, (18)

the finite time stable of the spacecraft attitude can be established if
the control law is designed as
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Vam = DT(_leT(P) Sigﬂl(p} -k Satffz(m))’ (19)

where the control gains are subject to the constraints k; > 0, k, > 0,
0<p, <1, p,=28/0+p); D' =D"(DD'Y" is the pseudo-
inverse of the control allocation matrix D; saty 2( -} is a new type of
saturation function, which is defined as

) if v .
; _ Jsighix), if x| £ 1 20
sat,(x) sign(x), otherwise. 20

Proof of Theorem 2: According to Lemma 3, the proof of
Theorem 2 proceeds in two steps: (1) the GAS of the spacecraft
attitude control system is firstly proven by the following Lyapunov
method and involking LaSalle invariance principle, (2) then the
LFTS is shown using homogeneity system theory.

Step 1. GAS analysis: We consider the Lyapunov candidate
function as follows:

3 1+

k
V,= %wTJm+ —]Z

T+7 @D

Pi

i=1

By proceeding with differentiation of V, in (21), one can achieve

V, = a)T(—a)xJa) +Dv+d)+kp sig”'(p)

(22
= — o' saty,(@) < 0.

Then, one can obtain a conclusion that V, is positive-definite and
its differentiation V, is a negative semi-definite function. Since
V, =0 implies @ =0, one has p =0 from the kinematics and
dynamics of the spacecraft attitude control system. By LaSalle
invariance principle, the GAS of the attitude control system is
established.

Step 2. GFTS analysis: The LFTS of the attitude control system
can be proven using finite-time stable lemmas associated with
homogeneity theory. The proof process can be achieved by the
similar method in [25, 26], which is omitted here for space
limitation. O

3.4 Integral-type sliding mode based finite-time fault tolerant
attitude stabilisation controller design

For the fine control performance, a novel ISMC-based fault
tolerant controller incorporating with a dynamical adjusting law
(noted as ISMFTC) is investigated for the spacecraft attitude
control system with actuator failures and external disturbances in
this subsection, with the help of the developed FTDO mechanism
in (7)—(9).

Utilising the ISMC approach [30], the sliding manifold is first
introduced in the form of

s = P{w(t) —w(fy)
¢ (23)
- f T (~o@)Jo(£) + Dv,,(p, 0))d? |,

where P e R’ is a positive definite constant matrix, which
should be designed such that PJ™' is invertible. In view of (23),
s(@(to), to) = 0 can be guaranteed at the time ¢ = 1. It implies that
the reaching phase is eliminated due to the specific construction of
the presented ISMC [30, 38].

Taking the differential of (23), it yields to

s =PJ'(Dv - Dv,, +d), (24)

Then, one can obtain the equivalent control law by solving the
equation § = 0, which is

4

v V,n— D'd, (25)

eq:
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Submitting the equivalent controller in (25) into the spacecraft
dynamics in (4), one can achieve the sliding mode dynamics as

Jor, = — o Jw,, + u,, . (26)

where the subscript eq denotes the state vector on the sliding mode.
Therefore, the finite-time stability of the sliding dynamics in (26) is
can be established by using the equivalent control design approach
according to Theorem 2.

For meeting the requirements of practical engineering, such as
fast convergence, robustness, and high steady-state precision and
so on, the construction of the FTC is developed as

V=V + Vpge (27)

where v,,, is the normal/baseline control signal designed in (20),
which determines the behaviour of the nominal system restricted
onto the sliding manifold. Whereas, the other control component
v,s consists of the robust control component compensating for the
synthetic uncertainty and the finite-time control term forcing the
attitude control system to converge to the origin in finite time.
Based on the ISMC and adaptive techniques, another main
contribution of this work states as follows.

Theorem 3: Consider the attitude control system in (1) and (4)
under Assumptions 1 and 2 in the presence of actuator failures and
disturbances. If the integral-type sliding manifold (23) based
control law is developed as (27), i.e. v = v,,,, + v, With

Vs =D (=9 — ¢ signis) —Ks —K sig’(s)) (28)
and the parameter adjusting laws are

- ALn P )
6= Culsil* sgn(ls| — e, if &> w: 29)
Gl otherwise,

the integral-type sliding manifold in (23) will reach the real sliding
mode [s5;| < e; within finite time. Then the attitude control system is
also practically finite-time stable or finite-time uniformly
ultimately bounded stable. In (29),
K. (5) = 0.5+ 0.5sat(4]s;| — 3¢;/¢), and sat( -} is a widely-used
saturation function, which is defined as

1, x> 1;
sat(x) = {x, -1<x<1;
-1, x< —1.

The adaptive parameter ¢ = diag(g;) is the estimation of the upper
bound @, which is of the reconstruction error of the synthetic
failure/uncertainty deriving from FTDO in Section 3.2. Whereas,
= diag(k;;) and K,= diag(k,;} denote symmetric positive-
deﬁmte control gain matrices. {;; >0 and §; >0 (i=1,2,3) are
dynamic gain parameters deciding the variation/developing of the
adaptive parameter g;, while y > 0 and ¢; > 0 are small constants.
Additionally, the initial value of the parameter adaptive law in (29)
should be positive and greater than u to achieve fine control
performance.
To proof and analysis the above Theorem 3, the following
lemma is firstly introduced [16, 39, 40].

Lemma 4: Consider the spacecraft attitude control system in (1)
and (4), controlled by the proposed control schemes in (27)—(29)
with the integral-type sliding mode manifold in (23) satisfying
s, # 0, the adjusting parameter ¢; has an upper-bound, i.e. there

exists a positive constant ¢ such that ¢; < o} and ¢; < g are
established all the time.

Proof of Lemma 4. Consider a Lyapunov candidate function as

54

(30)

V= % sTIP s+ ) 17@2,
i=1

where g; = ¢,— 0, denotes the estimation error; and Z;is a positive
parameter, which has nothing to do with the control performance.
By differentiating V5 along with the control schemes (27)—(29), the
proof process can be analysed in three cases. That is,

I ¢ >pand sl 2 ¢
2. ¢ >mpand | <¢
3. g<n

When ¢ > u (cases 1 and 2), ¢; is bounded and will be
monotonically decreasing. Once ¢; goes into the region of ¢; <
one also can obtain that V; < 0 by choosing appropriate parameter
values to meet §; = ¢;. It should be noted that V5 may be positive

in some specified situations, such as the control system counteracts
external or internal perturbations or actuators' failures abruptly,
which implies the |s;| or ¢; may be increase to some degree. When

these states/variables are forced into the regions of ¢; > u or
|si > €, the above cases 1 and 2 will be restarting correspondingly.
Thus, the boundedness of ¢ ;could be guaranteed reasonably. o

Proof of Theorem 3: Choose a positive-definite Lyapunov
function candidate as

3
V,= %[STJP’IS + E %g@] (31)

with ¢; =
one has

— ¢;. Differentiating V, and inserting the control laws,

V, € —Kis" — K,sTsigl(s)

¥ Z[e,|s, als) + (6 —

Y 32
@) 2
1
In view of the dynamics equation of the adjusting parameter ¢;
in (29), the subsequent proof process will be conducted in two
cases.
Case 1. According to (29), if |s{ >e€;, one has x/s) =1.
Submitting the adaptive law into the above inequality (32) and
adding some auxiliary equation components, it yields to

V, < — Ks' — Kstig"(s)

3
+ Z (edsi — &dsl+ @ilsi— ofls)

+

£M~ 1

(g“(e, Qf}|s,|)

; - e ei)

then
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where [ > 0 is a small constant, which is defined as an auxiliary
gain for the convenience of this proof process. According to
Lemma 4 proposed above, there exists a positive constant g; such

thatg; < ¢ and, < ¢; for all the time. Denoting
M = min {20k;€; + ke + 0f — @), 2631},

:Z( ~ Isl— ]Iez o

such that V, follows:

’

Vi< —MVI*— @, < — MV}? (33)

if one designs appropriate values of / meeting the constraint
¢ < &ilsillls| + D) < (,i6/(e; + 1)) such that ®, > 0. Since the
auxiliary parameter /; has nothing to do with the control
performances, it is always possible to choose an appropriate value
of [ to meet the above inequality constraint. Hence, the inequality
(33) implies that the finite time stability of the attitude control
system from any arbitrary initial conditions, converging to the
limited domain D, = {slls| <e¢;} within the finite time
T, <2V,*0VM.

Case 2. Once the system goes into D, i.e. the case |s;| < ¢, we
have

V4 < - E{ksﬁz +k4l€l +Qt )kz'

=1 (34)

|
-
|
BVEA
=y
s
=
E
|
o~
F
’P

IATA

with

3
@i 2 (L1 1l 1)ér il

satisfying the constraint that
i .
@, < Z eiteithfis L
=1

According to the Lemma 2, the attitude control system is practical
finite-time stable or finite-time uniformly ultimately bounded
stable. And the convergent time satisfies the constraint
T, < 2V*(0)M6,,0 < 6 < 1. On the other hand, it implies that V,

would be sign indefinite due to the existing of the term @3 in (34),
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Table 1 Four failure scenarios of RWs

ith RW & v, Nm

i=1 1 0<t<10 0
{0.5, t>10

i=2 0.85, 100, < t < 50 + 100t 0.008

[0.6, 50 + 1005 < < 100(zx+ 1)

i=3 0.940.07 sin (0.2r) 0.05 sin(?)

i=4 1 0<t <10 0.005
{0‘2, =10

which also means that the finite time stability of the closed-loop
attitude control system in the region of |s;| < €; may not be always
guaranteed. That is, V, may become positive value and || would
increase over the upper bound ¢; in this situation. Once |s} goes out
of the boundary, the above case 1 will be achieved with
V, < —MV,”, and then V, starts decreasing again. Consequently,
s;] works with a stable finite time reaching dynamics, and it has a
small bounded deviation of the integral-type sliding mode manifold
from the domain D;= {s;|ls;| < ¢;} during the transient response.
Then, the attitude control system would converge to the bounded
region as follows:

L1
Dy = |slig] < (Fetarife

min {kye; + ky&" +0;— 6}

In view of this, one can conclude that |s] will converge to the
region of D, in finite time, but could be sustained in the greater
domain of D, uD. Therefore, with application of the FTDO
mechanism in (7)—~(9), the finite-time stability of the attitude

control system in (1) and (4) can be established if the control laws
are designed as ISMFTC in (27)—(29). o

4 Simulation and analysis

A common configuration with four RWs is chosen as the
spacecraft's actuators in this example, and the configuration and
assembling locations/angles are the same to the authors' previous
work [16, 32]. In addition, the maximum magnitude of the output
torque of the individual RW is supposed to be 7,,x = 0.25 Nm. In
order to verify the reliability of the proposed FTDO in (7)—(9) and
ISMFTC in (27)—(29) in this work, four failure scenarios are firstly
described mathematically in Table 1.

It is assumed that the normal moment of inertia of the rigid

spacecraft is given as J =[20,0,0.9;0,17,0;0.9,0,15](kg - nr)
according to [16, 23, 32, 41]. The initial attitude MRPs are chosen
randomly as p,=[—0.1579,0.1368, 0.0947]", and the initial
angular velocity is set as ay = [0,0, 0T (rad/s). In addition, the total
external disturbances are supposed as

2cos(10gt) + 3sin(3¢t) — 8
d = 0.25 x 10| = 1.5sin(2¢t) + 3cos(5¢ct) + 12| (Nm)
3sin(10¢r) — 6sin(der) + 9

where ¢ is assumed to be 10| @ ||. And that, the gains of the
proposed schemes are chosen as &, = 0.6, 4, =1, 1,= 0.6, k ;= 4.9,
k=3, p =09, y =0.88, i=6:=02, u=0.1,
K; = diag(6.5,6.7,7.2), K, = diag(4.0,4.22,4.0).

4.1 Performances of the FTDO

The time responses of observation errors of the attitude angular
velocity @ and the auxiliary variable & actuated by FTDO are
shown in Figs. 1 and 2. As is seen in Fig. 1, the attitude angular
velocity is successfully observed, and the corresponding
observation error has a very high accuracy of z,;<2x 107
(i = 1,2,3) during the stable status. From the time response in Fig.
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Fig. 3 Time response of the spacecraft attitude MRPs p

2, it is obtained that the estimation is also achieved after the finite
time, and the observation accuracy can reach z;<2x 107’
(i=1,2,3) after 40 s. It also implies that the auxiliary variable ¢
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Fig. 5 Time response of the actual actuator control torques v

is bounded, and it will converge to the synthetic uncertainty/
disturbance d in finite time.

4.2 Performances of the control schemes under actuators'
partial failures

For further illustrating the effectiveness and superiority of the
proposed integrated attitude control scheme FTDO+ISMFTC in
this work, the saturation proportional derivative controller in [32]
(noted as SPD) is conducted under the same simulation conditions
for comparisons. The time responses of MRPs and attitude angular
velocity are presented in Figs. 3 and 4. It is seen clearly that the
proposed FTDO+ISMFTC scheme achieves fine performances
with a finite settling time less than 50 sec, and a high stability
accuracy of 107" for the spacecraft attitudes. What is more, the
chattering phenomenon has been attenuated or restrained under the
proposed control approach by wusing the failure/uncertainty
reconstructed information deriving from the proposed FTDO.
Furthermore, the time responses of the commanded actuators'/RWs'
torques are presented in Fig. 5.

4.3 Performances of the control schemes under actuators’
patrtial failures and complete failure

In this case, more severe failures of the RWs including the
complete failure are considered in the simulations, and the detailed
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failure scenarios are presented mathematically in Table 2. The time
responses of MRPs and attitude angular velocity are presented in
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Table 2 Four failure scenarios of RWs

ith RW ;i Vi, Nm

i=1 1 0<t<10 0
{0.5, t>10

i=2 0.85, 100 < t < 50 + 100z, 0.008

[0.6, 50 + 1005 < < 100(zx+ 1)

i=3 0.2 + 0.07 sin(0.27) 0.05 sin(z)

i=4 I, 0<r=<10 0.005
{0‘ t=10

Figs. 6 and 7. It is seen clearly that the proposed FTDO+ISMFTC
achieves fine performances with a finite settling time less than 70
sec with high stability accuracy. And also one can obtain that
FTDO+ISMFTC manages to compensate for the actuator failures
and disturbances successfully. But, the traditional PD-type control
scheme SPD cannot guarantee the stability of the spacecraft
attitude control system. The severe oscillations in the simulation
exhibitions imply the failure of the space attitude control missions.
Furthermore, the time responses of the commanded RWs' torques
are presented in Fig. 8. Note that, the magnitudes of the working
actuators/RWs are explicitly taken into account to meet the relevant
constraints.

In brief, these above results verify that the fast convergence,
high-precise attitude stabilisation and fine chattering-attenuating
performance have been accomplished in the closed-loop spacecraft
attitude control system by utilising the proposed approaches FTDO
+ISMFTC in this work in spite of some undesired/unknown
failures and disturbances.

5 Conclusion

In this paper, a novel FTDO incorporating with an integral sliding
mode based fault tolerant attitude control scheme is developed for
a rigid spacecraft, which is subject to external disturbance torques
and actuator failures. Firstly, a simple and novel FTDO is designed
to reconstruct the synthetic uncertainty deriving form actuator
failures and disturbances. Using the observations obtained by
FTDO, an integral sliding mode based finite-time fault tolerant
attitude stabilisation controller integrating with an adjusting law is
investigated to ensure the closed-loop attitude control system
converge to the stable region in finite time. However, the designed
FTDO only provides the so-called synthetic/lumped uncertainty/
disturbance, rather than isolates and identifies the individual failure
of the actuators, which is one of the subjects in our future
researches.
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